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ГРАНИЧНЫЕ ИНТЕГРАЛЬНЫЕ УРАВНЕНИЯ ДЛЯ РЕШЕНИЯ ДВУМЕРНЫХ 
ЗАДАЧ ТЕОРИИ УПРУГОСТИ 

Иномзода Абдуназар (Дадобоев Абдуназар Иномович) 
Политехнический институт Таджикского технического университета им. акад. М.С. Осими в г. Худжанде 

В статье рассматривается процесс получения граничных интегральных уравнений, которые применяются для решения 

двумерных задач теории упругости. Особенность этих уравнений заключается в том, что неизвестными в них являются перемещения 

или напряжения на контуре исследуемого объекта. После определения этих параметров на следующем этапе вычисляются 

перемещения и напряжения внутри области. Следовательно, применение метода граничных уравнений на единицу уменьшает 

размерность задачи. 
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решение, дельта функция, поверхностные напряжения. 

МУОДИЛАҲОИ ИНТЕГРАЛИИ КАНОРӢ БАРОИ ҲАЛЛИ МАСЪАЛАҲОИ ДУЧЕНАКАИ 
НАЗАРИЯИ ЧАНДИРӢ 

Абдуназар Иномзода (Дадобоев Абдуназар Иномович) 
Ин мақола раванди ба даст овардани муодилаҳои интегралии марзиро, ки барои ҳалли масъалаҳои дученакаи назарияи 

чандирӣ истифода мешаванд, баррасӣ мекунад. Хусусияти фарқкунандаи ин муодилаҳо дар он мебошад, ки номаълумҳо ҷойивазкунӣ 

ё шиддатҳо дар канори объекти тадқиқшаванда мебошанд. Пас аз муайян кардани ин параметрҳо, қадами навбатӣ ҳисоб кардани 

ҷойивазкунӣ ва шиддатҳо дар дохили домен мебошад. Дар натиҷа, истифодаи усули муодилаи марзӣ андозаи масъаларо як маротиба 

кам мекунад. 

Калимаҳои калидӣ: фазои бемаҳдуд, муодилаҳои дифференсиалӣ, муодилаҳои марзӣ, ҳалли асосӣ, функсияи делта, шиддати 

сатҳӣ. 

BOUNDARY INTEGRAL EQUATIONS FOR SOLVING TWO-DIMENSIONAL PROBLEMS OF 
ELASTICITY THEORY 

Abdunazar Inomzoda (Dadoboev Abdunazar Inomovich) 
This article examines the process of deriving boundary integral equations used to solve two-dimensional problems of elasticity theory. 

A distinctive feature of these equations is that the unknowns are the displacements or stresses on the contour of the object under study. After 

determining these parameters, the next step is to calculate the displacements and stresses within the domain. Consequently, using the boundary 

equation method reduces the problem dimension by one. 

Keywords: unbounded space, differential equations, boundary equations, fundamental solution, delta function, surface stress. 

 

Введение  
Одним из основных методов вычисления граничных уравнений в теории собственных 

дифференциальных состояний является сведение решения уравнений в виде линейных интегралов к 
потенциалам, основанное на фундаментальном решении. Этот метод потенциалов, берущий начало в трудах 
выдающихся немецких математиков прошлого И. Фредгольма и К. Неймана, не утратил своей актуальности и 
в наши дни. Этот прикладной метод, наряду с другими вычислительными методами, такими как метод 
разделения переменных и функции источника (метод функций Грина), применяется для данного типа 
граничных уравнений. Дано пояснение для получения граничных интегральных уравнений, используемых для 
решения двумерных уравнений теории упругости. Отличительной особенностью этих уравнений является то, 
что искомыми неизвестными являются перемещения или напряжения на границе жёсткой диафрагмы. 
Основатели теории потенциала тесно связаны со многими учёными прошлого и настоящего веков, такими как 
Н. П. Векуа, К. Ф. Гаусс, Д. Гильберт, Д. Грин, Н. М. Гюнтер, П. Г. Л. Дирихле, В. Д. Купрадзе. Применение 
метода граничных условий для решения задач однослойного и многослойного потенциального типа приводит 
к интегрированию уравнений. Основную часть вычисления составляет возникновение особого интеграла. В 
сложившейся ситуации важен подход к работе и выбор её схемы. С развитием строительной механики и 
вычислительной техники различные приложения численных расчётов стали более точными и чёткими. 

Поскольку этот метод граничных уравнений основан на фундаментальном решении 
дифференциальных уравнений. 

 

Метод граничных уравнений  
Граничные интегральные уравнения двумерных задач теории упругости можно получить исходя из 

тождества Сомильяна [1], полученные на основе теоремы о взаимности работ. Погружаем конечную область 

+  с заданными на поверхности   компонентами напряжений и перемещений в неограниченное 
пространство, которое последовательно загружается единичными силами и описывается 
дифференциальными уравнениями  
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где  
* * *

x xx xyu u u= + ,  
* * *

y yx yyu u u= + , 1 2 (1 ) / (1 2 )G G  = − − ,  2 / (1 2 )G G = − , G −модуль  упругости при 

сдвиге согласно теореме Бетти, получаем 

( ) ( )x xx y yx x xx y yxp u p u d u u d    

 

+ + +  =   

( ) ( , )xx x yx y xp u p u d p k u d 

 

= + +   ,                                             (2) 

здесь 
xxu ,…, yxp

 - фундаментальные перемещения и напряжения. С учётом свойств дельта-функция 

Дирака  

( , ) 0p k =  при p k ,  ( , )p k =   при p k , 

( , ) ( ) ( ) ( )x xp k u k d k u p


 = , 

второй интеграл в правой части будет равняться ( )xu p , где точка ( , )p    , тогда уравнение (2) можно 

представить в виде 

( ) ( )( )x x xx y yx k xx x yx y ku p p u p u d p u p u d   

 

= +  − +  +   

( )x xx y yxu u d  



+ +  ,                                                     (3) 

где ,x yp p − поверхностные напряжения, ,xx xxu p  − перемещения и напряжения, возникающие в точке 

( , )k x y  в направлении оси x  от действия единичной сосредоточенной силы, действующей по этой же оси,  

,yx yxu p  −перемещения и напряжения, возникающие в точке ( , )k x y  в направлении оси y  от действия 

единичной сосредоточенной силы, действующей по оси x . Индекс k  в (3) подчеркивает, что переменным 

интегрирования по контуру  являются координаты , .x y  Формула (3) определяет перемещения по 

направлению оси x  в точке ( , )p    внутри области   при заданных значениях xp , yp , xu и yu на контуре, а 

также объемных сил x  и y в области  .  

Проведя аналогичную процедуру от действия единичной сосредоточенной силы, действующей по оси 
y , получаем 

( ) ( )( )y x xy y yy k xy x yy y ku p p u p u d p u p u d   

 

= +  − +  +   

( )x xy y yyu u d  



+ +  .                                                   (4) 

Граничные интегральные уравнения можно получить из (3) и (4) при предельном переходе, когда точка 

( , )p    устремится к границе  , а при этом точка ( , )k x y  находится на границе. При перемещении точки ( , )p    

к границе интегралы в правой части (3), как несобственные,  можно представить в виде суммы двух интегралов  

x xx k x xx k x xx kp u d p u d p u d

 

  

 − 

 =  +    ,                                                  (5) 

где kd d d   = = , тогда с учетом 
0

lim 0x xx kp u d







→


 =  [5,6], получаем  
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



 

→
− 

 =   ,    
0

lim 0x xx kp u d







→


 = .                             (6) 

В этом простом случае вторая подынтегральная функция эквивалентна первой степени 
подынтегрального выражения (4). В другом случае, т.е. второй степени подынтегрального выражения 
интеграла (4), рассматривая базисное решение как нечастный интеграл при выполнении условия Гёльдера 
[2], получаем [5, 6]. 
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−  внутренний угол края в раасматриваемой области точке ( , )p   , ввиде примера, для гладкой плоской 

края , =  0,5xxc =   и 0.yxc =  Таким образом, с отчетами по остальным частям получаем результат, 

равный (4). 

( )
0

lim ( )xy x yy y k xy xp yy ypp u p u d c u c u


 

→

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где                                                        
( ) ( )

2sin 2 sin
1 ,

2 8 1 4 1
yy xy yxc c c

  

    
= − + = =

− −
.                          (11) 

Таким образом, при переходе точки ( , )p    к границе области второй интеграл в (3) и (4) понимается в 

смысле главного значения по Коши, а остальные интегралы в обычном смысле. Следовательно, при 

( , )p      уравнения (3) и (4) с учетом (5)-(11) преобразуются в граничные интегральные уравнения [3, 4]   
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Граничные интегральные уравнения (12) и (13) можно представить в матричной форме 

p k kd d d
  

= − +   
* * *CU U P P U U F ,                                       (14) 

где векторы перемещений, поверхностных напряжений и объемных сил представляются в виде  

x

y

u
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 
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y





 
=  
 
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Симметричные матрицы коэффициентов, фундаментальных перемещений и напряжений 
записываются так: 
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−*U матрица фундаментальных решений, компоненты которых соответствуют точкам внутри 

области  , в отличие от матрицы 
*U , где компоненты перемещений принадлежат границе .   

Из решения (14) вычисляют векторы напряжений и перемещений, соответствующие контуру 
исследуемого объекта, а затем вычисляются перемещения и внутренние усилия в произвольных сечениях 
внутри области [5-8].  

 
Вывод  

Полученное интегральное уравнение позволяет исследовать напряженно-деформированное 
состояние для плоских уравнений теории упругости для видимой области жесткой диафрагмы. Система 
граничных уравнений сводится к алгебраическому уравнению, в котором напряжение и перемещение 
определяются системой округлений граничных параметров (сплайн-аппроксимации) или преобразований. На 
следующем этапе определяются перемещения и напряжения внутри области.  

Рецензент: Каландарбеков И.К. — д.т.н., профессор кафедры «Промышленное и гражданское строительство» ТТУ 
им. акад. М.С. Осими. 
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