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ЧИСЛЕННОЕ РЕШЕНИЕ ГРАНИЧНЫХ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ 
ДВУМЕРНОЙ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ 
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2Политехнический институт Таджикского технического университета им. акад. М.С. Осими в г. Худжанде 
В данной статье предлагается методика численного решения граничных интегральных уравнений путем сплайн-

аппроксимации граничных параметров. Предполагается, что перемещения и напряжения на контуре исследуемого объекта 

изменяются по определённому закону, соответствующему сплайну нулевого порядка. Численное интегрирование коэффициентов 

разрешающей системы уравнений выполняются методом Гаусса.   

Ключевые слова: сплайн, фундаментальное решение, решение Кельвина, радиус-вектор, метод Гаусса, граничное уравнение, 

численное интегрирование. 

ҲАЛЛИ АДАДИИ МУОДИЛАҲОИ ИНТЕГРАЛИИ КАНОРӢ БАРОИ МАСЪАЛАИ ДУЧЕНАКАИ 
НАЗАРИЯИ ЧАНДИРӢ 

Низомов Джахонгир Низомович, Иномзода Абдуназар 
Дар ин мақола усули ҳалли рақамии муодилаҳои интегралии марзӣ бо истифода аз тақриби сплайнии параметрҳои марзӣ 

пешниҳод карда мешавад. Фарз карда мешавад, ки ҷойивазкунӣ ва фишорҳо дар контури объекти омӯхташуда мувофиқи қонуни 

муайяне, ки ба сплайни тартиби сифр мувофиқат мекунад, тағйир меёбанд. Интегратсияи рақамии коэффитсиентҳои системаи 

муодилаҳои ҳалкунанда бо истифода аз усули Гаусс анҷом дода мешавад. 

Калимаҳои калидӣ: сплайн, ҳалли асосӣ, ҳалли Келвин, вектори радиус, усули Гаусс, муодилаи марзӣ, интегратсияи рақамӣ. 

NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS FOR A TWO-DIMENSIONAL 
PROBLEM OF ELASTICITY THEORY 

Nizomov Jahongir Nizomovich, Inomzoda Abdunazar 
This article proposes a method for the numerical solution of boundary integral equations using spline approximation of the boundary 

parameters. It is assumed that the displacements and stresses on the contour of the studied object vary according to a certain law corresponding 

to a zero-order spline. Numerical integration of the coefficients of the resolving system of equations is performed using the Gauss method. 

Keywords: spline, fundamental solution, Kelvin solution, radius vector, Gauss method, boundary equation, numerical integration. 

 

Рассмотрим двумерную конечную область в условиях плоской деформации с заданными граничными 

условиями, которая находится под воздействием внешних сил. Предполагается, что на одну часть границы 

области заданы перемещения, а на другую ее часть – напряжения. Для такой задачи, где неизвестными 

являются напряжения на одной части контура и перемещения на другой части, система граничных 

интегральных уравнений, полученная исходя из тождества Сомильяна [1], представляется в матричной 

форме   
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− внутренний угол границы в точке ( , )p   , например, для гладкой границы , = 0,5xxc =  и 

0yxc = , ,x yp p − поверхностные напряжения, ,xx xxu p  − перемещения и напряжения, возникающие в точке 

( , )k x y  в направлении оси x  от действия единичной сосредоточенной силы, действующей по этой же оси,  
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,yx yxu p  −перемещения и напряжения, возникающие в точке ( , )k x y  в направлении оси y  от действия 

единичной сосредоточенной силы, действующей по оси x . 

Фундаментальное решение системы уравнений (1), определяющее поле перемещений в 

неограниченной изотропной упругой среде от действия единичных сил xe  и ye , строится на основе решения  

Кельвина [2]. Решение Кельвина в условиях плоской деформации можно записать в виде [3]  

( )* 2

13 4 ln cosxx pku a r  = − − −  , 
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1 2cos cosxy yxu u a  = = ,                                                     (4) 
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23 4 ln cosyy pku a r  = − − −  , 

здесь 1/ 8 (1 )a G = − , 
2 2[( ) ( ) ]pkr x y = − + − −расстояние между точками ( , )k x y  и ( , )p   , 1 2,  −

углы наклона радиус-вектора pkr к осям x  и y соответственно в точке ( , )p   . Компоненты напряжений на 

любой наклонной по отношению к осям x  и y площадки, определяемые из условия равновесия 

призматического элемента, представляются так: 

* 2
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Здесь                   1/ 4 (1 )b  = − , 1 2c = − ,  1 1cosm = ,  2 2cosm = , 

1 1 2 2cos cos cos cos cos    = + , 

 − угол наклона между радиус-вектором pkr  и нормалью n  в точке ( , )k x y . Следует отметить, что 

фундаментальные решения  (5) получены для условия, когда напряжения на границе бесконечной области 
равны нулю.     

Уравнение (1) с использованием В-сплайна нулевого порядка [4] можно преобразовать к системе 

алгебраических уравнений 
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где  ,i in N −номера узлов на контуре с неизвестными перемещениями или напряжениями. 

Коэффициенты, входящие в систему уравнений (6), в соответствии с (4)-(5) представляются в виде [3]  
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Здесь               1 1 2 2cos ij n m n m = + ,   1 2 2 1sin ij m n m n = − ,  
1 1cosn = , 

2 1sinn = , 

1 1cosm = , 
2 1sinm = ,   

2 2 1/2[( ) ( ) ]ij j i j ir x x y y= − + − , 

( )1/ 8 1a G = − ,  ( )1/ 4 1b  = − , 1 2c = − , 

ij − символ Кронекера, jS −длина носителя В-сплайна нулевого порядка, в пределах которого 

производится интегрирование,  − угол наклона между радиус-вектором r и  нормалью n  в точке ( , )k x y  на 

границе области, 
1 2,  − углы наклона нормали n  к осям x  и y  в точке ( , )k x y ,  

1 2,  − углы наклона 

радиус-вектора r к осям x  и y  в точке ( , )p   . 

Систему уравнений (6)  можно представить в матричной форме 

0

0

x

y x

x y

y

U

U PA B E F E F

P PC D G H G H

P

 
 

 − −      
=      − −        

 
 

,                                   (9) 

где  𝑈𝑥, 𝑈𝑦 , 𝑃𝑥, 𝑃𝑦 −векторы искомых перемещений и напряжений, 𝑃𝑥
0, 𝑃𝑦

0 −заданные векторы напряжений на 

контуре, 𝐴, 𝐵, 𝐶, 𝐷 −прямоугольные матрицы размера 𝑁𝐸 × 𝑁𝑈, где 𝑁𝐸 −общее число элементов нулевого 

порядка, NU −число элементов, где неизвестными являются перемещения, 𝐸, 𝐹, 𝐺, 𝐻 −прямоугольные 

матрицы размера 𝑁𝐸 × 𝑁𝑃, где 𝑁𝑃 −число элементов с неизвестными напряжениями. Так как 𝑁𝐸 = 𝑁𝑈 +𝑁𝑃, 

то можно заметить, что квадратная матрица коэффициентов в (9) имеет порядок 2 NE . Прямоугольные 

матрицы 𝐸, 𝐹, 𝐺, 𝐻в правой части (9) в общем могут иметь размеры 𝑁𝐸 × 𝑁𝑈. 
После решения системы уравнений (9) и определения искомых перемещений и напряжений, 

соответствующих поверхности рассматриваемого тела  , можно перейти ко второму этапу исследования, 

где определяются перемещений и напряжений в характерных точках внутри области  . Компоненты тензора 
напряжений в точках внутри области тела, находящегося в условиях плоской деформации, выражаются 
соотношениями 
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где  G −модуль сдвига,  − коэффициент Пуассона. 

Третий этап анализа напряженно-деформированного состояния двумерной задачи теории упругости 
сводится к вычислению тангенциальных напряжений на контуре тела  
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Из (12) находим  / (1 ) (1 2 ) / 2 (1 )n s n G     = − − + − − и, подставив в (11), получаем 

(2 ) / (1 )s s nG   = + − ,                                              (13) 

где  /s su s =   , 
su − тангенциальное перемещение, положительное направление которого совпадает с 

направлением оси s  в локальной системе координат. 

 
Рисунок 1 – К определению тангенциальных напряжений и перемещений 

 
Численное интегрирование коэффициентов разрешающей системы уравнений (1) методом Гаусса [5] 

в пределах носителя сплайна нулевого порядка сводится к следующему 
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где n− число ординат, 
ks ,

kA − координаты точек интегрирования и их весовые коэффициенты, js −

длина элемента. Остальные коэффициенты в (7) и (8) вычисляются аналогично (14). 

Таким образом, разработан алгоритм численного моделирования плоской задачи теории упругости на 

основе метода граничных интегральных уравнений. Данный алгоритм может быть запрограммирован, и 

получены результаты численного решения плоской задачи теории упругости при различных воздействиях.  

Рецензент: Каландарбеков И.К. — д.т.н., профессор кафедры «Промышленное и гражданское строительство» ТТУ 
им. акад. М.С. Осими. 
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